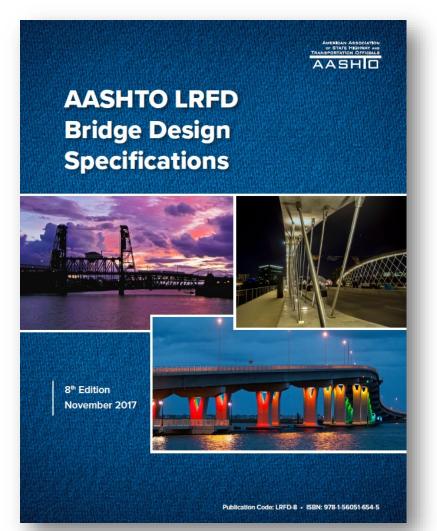


RIGID RUGGED RESILIENT

concretepipe.org

Structural Pipe Design

Paul Imm, P.Eng. – Cambridge, Ontario, Canada **Riley Dvorak**, P.E. – Maple Grove, MN



August 22, 2019

OVERVIEW

- Rigid vs flexible pipe behavior
- Design methods in AASHTO LRFD Section 12 Buried Structures:
 - Concrete pipe Indirect Design with Standard Installations
 - Plastic pipe Limit states design
- Summary

STRUCTURAL DESIGN OF BURIED PIPE

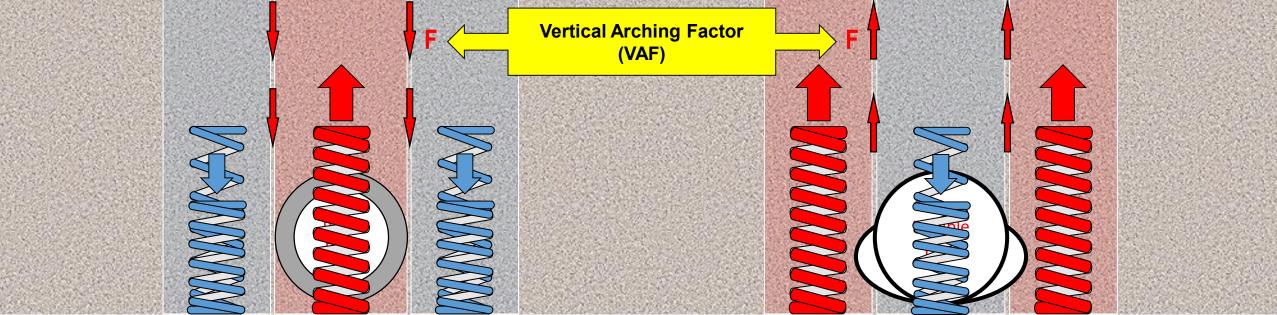
These structures become part of a composite system comprised of the pipe and the soil envelope.

12.10 – Reinforced Concrete Pipe

- Direct Design Method
- Indirect Design Method

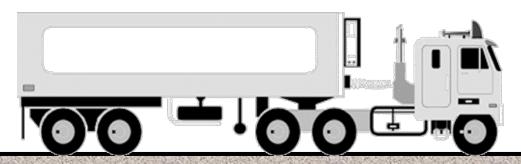
12.12 – Thermoplastic Pipes

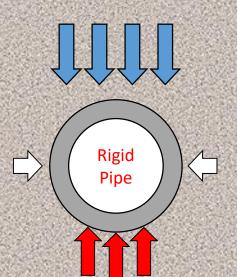
- Strength Limit States
- Service Limit States

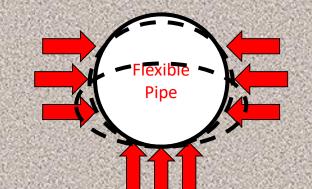

ENGINEER OF RECORD RESPONSIBILITY

The professional engineer responsible for preparation of engineering drawings is also responsible for the <u>structural design</u> of pipe installations.

In all cases, designers shall keep a record of structural design calculations associated with each project. Design calculations for specific projects shall be provided to the City upon request.

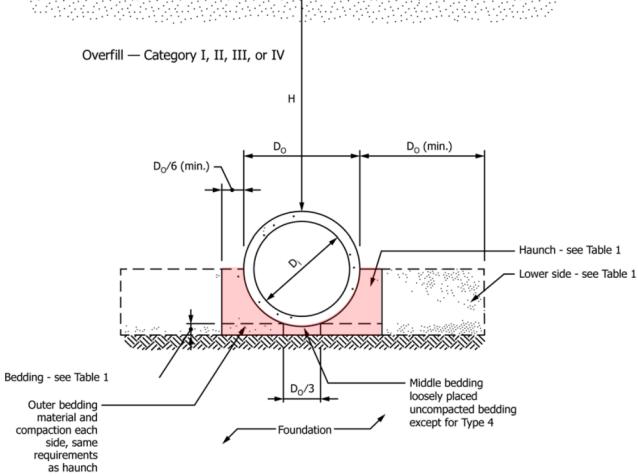

RIGID vs FLEXIBLE PIPE

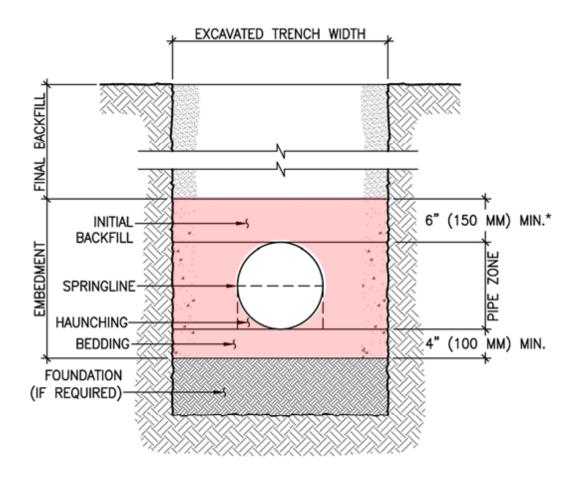




Rigid Pipe: VAF > 1.0 the <u>pipe</u> carries most of the load **Flexible Pipe:** VAF < 1.0 <u>embedment soil</u> carries most of the load

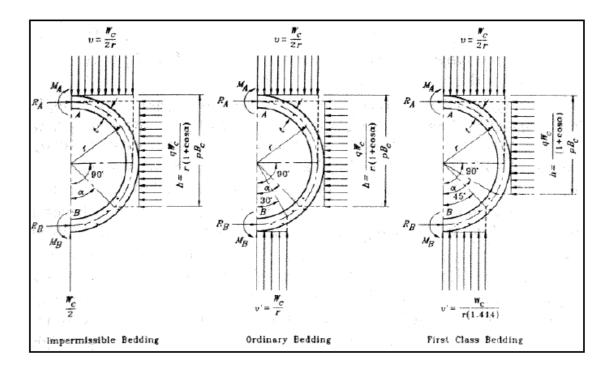
RIGID vs FLEXIBLE PIPE




Passive side soil support to control deflection

4 bedding types & 5 pipe classes for economical design options Installation sensitive and complex design method

INSTALLATION DETAILS


ASTM C1479 for Concrete Pipe

ASTM D2321 for Plastic Pipe

CONCRETEPIPE.ORG

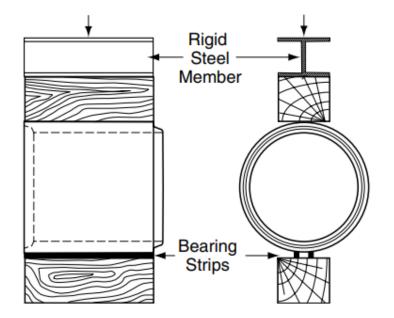
American Concrete Pipe Association

EVOLUTION OF RCP DESIGN

1930s – Marston-Spangler Model Traditional Beddings – Class A, B, C, D Indirect Design Method only

$\begin{array}{c} WF = 1.35 \\ WF = 0.45 \\ M2/A1 = 0.45 \\ A2/A1 = 0.55 \\ A1/A = 0.55$

ASCE TYPE 3


ASCE TYPE 4

ASCE TYPE 2

1980s – Heger Pressure Distribution Standard Installation Beddings – Type 1, 2, 3, 4 Direct Design or Indirect Design Methods

ASCE TYPE 1

3-EDGE BEARING TEST (D-LOAD TEST)

Criteria in ASTM C497:

- 0.01 in. design crack (D-Load)
- Ultimate strength

Dime is 0.053" thick 5 times the D-Load

RCP STRENGTH CLASSIFICATIONS

Example:

ASTM C76	D _{0.01} (lbs/ft/ft)	D _{ult} (lbs/ft/ft)			
Class I	800	1200			
Class II	1000	1500			
Class III	1350	2000			
Class IV	2000	3000			
Class V	3000	3750			

What is the minimum load required for a 18 inch Class V pipe in a 3EB Test?

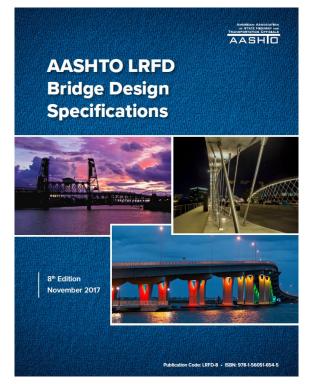
 $D_{0.01}$ = Strength x Pipe length x Inside Dia

= (3000 lbs/ft/ft)(8 ft)(1.5 ft)

= 36,000 lbs

$$D_{ult} = (3750 \text{ lbs/ft/ft})(8 \text{ ft})(1.5 \text{ ft})$$

= 45,000 lbs


Reinforced Concrete Pipe Design

Indirect Design Method with Standard Installations

CONCRETE PIPE DESIGN OPTIONS

First Principles Accurate, but tedious

PipePac software

www.pipepac.com

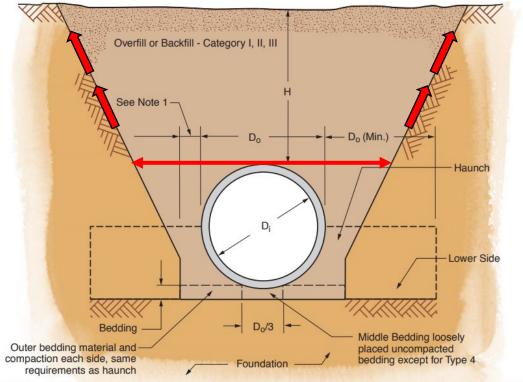
Efficient, but understand design principles

FOR CONCRETE PIPE TABLES HEIGHT Class I Class II Class II Class II Class II FIL RFD

Fill Height Tables

Quick, but understand the assumptions used

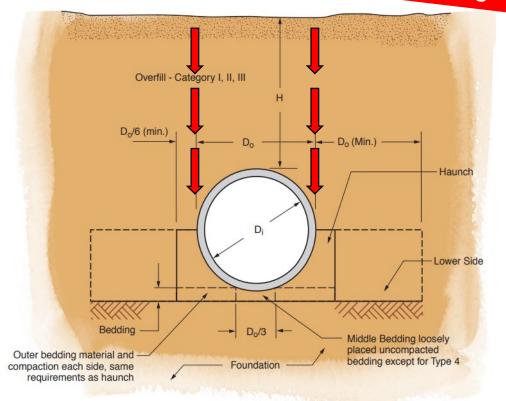
INDIRECT DESIGN OVERVIEW



$$D_{0.01} = \left(\frac{W_{E} + W_{F}}{B_{FE}} + \frac{W_{L}}{B_{FLL}}\right) \left(\frac{FS}{Dia}\right)$$

- Determine all loads Earth (W_E) , Live (W_L) , Fluid (W_F) , Surcharge
- Select a Standard Installation bedding type
- Determine Bedding Factors (B_{FE} & B_{FLL})
- Apply a Factor of Safety (FS) = 1.0 for D_{0.01}
- Calculate D-Load to produce 0.01" crack (D_{0.01} in lb/ft/ft)
- Select a standard pipe strength class

RCP INSTALLATION TYPES


Assume the Worst-Case Use positive projection embankment for design

Note 1: Clearance between pipe and trench wall shall be adequate to enable specific compaction, but not less than D₀/6.

Trench Installation

Upward friction from trench walls reduces the earth load

Embankment Installation

Drag down friction from side soil increases the earth load

WEIGHT OF THE PIPE

A wall = $\frac{D_i}{12}$ B wall = $\frac{D_i}{12} + 1$ C wall = $\frac{D_i}{12} + 1.75$ • Concrete pipe wall thickness may vary by producer

Direct Design – must consider pipe self-weight

Indirect Design – pipe self-weight is ignored since already accounted for in the 3EB Test

Where: $D_i = inside diameter in inches$

EARTH LOAD (W_E)

$$D_{0.01} = \left(\frac{W_{\rm E} + W_{\rm F}}{B_{\rm FE}} + \frac{W_{\rm L}}{B_{\rm FLL}}\right) \left(\frac{\rm FS}{\rm Dia}\right)$$

W_E = Vertical Arching Factor (VAF) x Prism Load (PL)

AASHTO 12.10.2.1: Unit weight of soil (w) cannot be < 110 lb/ft³. Typically 120 lb/ft³ used

VAF for Embankment:

Standard Installation	VAF
Type 1	1.35
Type 2	1.40
Туре 3	1.40
Type 4	1.45

H B_c or D_o

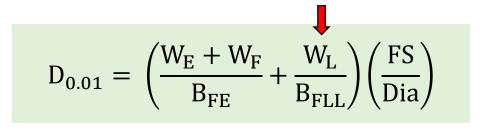
ACPA (Design Data 9):

$$W_E = VAF \cdot w \left[H + \frac{D_o(4 - \pi)}{8} \right] D_o$$

FLUID LOAD (W_F)

$$D_{0.01} = \left(\frac{W_{E} + W_{F}}{B_{FE}} + \frac{W_{L}}{B_{FLL}}\right) \left(\frac{FS}{Dia}\right)$$

AASHTO 12.10.2.2: Weight of fluid inside the pipe must be considered in design


• Fluid Load is assumed to be supported by lower part of the pipe (like earth load)

$$W_{\rm F} = \gamma_{\rm w} \cdot \pi \left(\frac{{\rm D}_{\rm i}}{24}\right)^2$$

Where:

 $D_i = inside diameter in inches$ $\gamma_w = unit weight of water = 62.4 lb/ft^3$

LIVE LOAD (W_L)

AASHTO 3.6.1.2.6a: For single span culverts – live load (truck) is negligible when depth of fill is greater than 8 ft and exceeds the span.

Highway Loads – ACPA Design Data 1

Aircraft Loads – ACPA Design Data 2

Railroad Loads – ACPA Design Data 3

BEDDING FACTORS (B_f)

 B_f = ratio of max. moments in pipe wall:

$$D_{0.01} = \begin{pmatrix} W_E + W_F \\ B_{FE} \end{pmatrix} + \frac{W_L}{B_{FLL}} \end{pmatrix} \begin{pmatrix} FS \\ Dia \end{pmatrix}$$
$$B_f = \frac{M_{Test}}{M_{Field}} \quad \blacksquare \quad M_{Test} = B_f \cdot M_{Field}$$

Embankment Earth Load Bedding Factors (B_{FE}):

Pipe Dia	Standard Installation										
(in.)	Type 1	Type 2	Туре З	Type 4							
12	4.4	3.2	2.5	1.7							
24	4.2	3.0	2.4	1.7							
36	4.0	2.9	2.3	1.7							
72	3.8	2.8	2.2	1.7							
144	3.6	2.8	2.2	1.7							

Live Load Bedding Factors (B_{FLL}):

Dino Dio (in)	Fill Height (ft.)							
Pipe Dia (in.)	< 2.0 ft	≥ 2.0 ft						
12	3.2	2.4						
18	3.2	2.4						
24	3.2	2.4						
30 and larger	2.2	2.2						

Note: These B_{FLL} in LRFD (8TH Ed) is not the same as the 7th Ed or the ACPA DD9.

ACPA LRFD FILL HEIGHT TABLES

- Based on Indirect Design as per LRFD Bridge Design Specification (7TH Ed)
- Positive Projecting Embankment
- C wall for all sizes >> max. prism load
- Soil unit weight = 120 lb/ft³
- AASHTO HL-93 live load
- For Type 1: D-Loads increased by multiplying installation factor of 1.10 (AASHTO 12.10.4.3.1)

	Reinforce Crack Per				01 inch										_			11							
	lass I			≤ 800			Fill Height Tables are based on: 1. γs = 120 pcf 2. AASHTO HL-93 live load					D-Load (Ib/ft/ft) for Type 3 Bedding									Class I Class II	Clas Clas			
CI	ass II		≤	≤ 1000									nkment Con	dition -									Class III	Spec	cial Design
Cl	ass III		4	≤ 1350				8								tions									
Cl	ass IV		ž	≤ 2000			10.10.20	<u> </u>	<u></u>				Class I	Clas	ss IV		Fill Hei	ght in Fee	et						
CI	ass V		2	≤ 3000		bad (lb	o/ft/ft) fo	or type	2 Bedd	aing			Class II	Clas											
Speci	al Design		>	> 3000		onditions							Class III	Spe	cial Design	5	6	7	8	9	10	11 1098	12	13 1294	14 1392
							,									05 83	838 815	896 872	964 939	902 880	1000 975	1098	1196 1165	1294	1392
							Cill LL	eight in F	aat							72	804	860	926	870	963	1057	1150	1243	1337
	Pipe Size (in)															7	799	855	921	867	959	1051	1144	1236	1329
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	5	798	854	920	868	960	1051	1143	1235	1327
	12	1492	1322	880	727	694	705	741	788	704	781	858	934	1011	1087	0	804	860	925	872	963	1055	1147	1238	1330
	15	1434	1272	851	707	676	688	724	771	691	766	841	915	990	1065	7	812	_				_	1153	1245	1337
	18	1358	1240	834	697	668	680	717	763	688	761	835	909	983	1056	5	813	_	' \ / /		- /		1162	1254	1345
	21	1220	1218	824	692	665	678	715	762	689	763	836	909	983	1056	4	815			P	_	く	1172	1264	1356
	24	1202	1203	818	690	665	680	717	764	694	768	841	915	988	1062	0	815				_ 、		1179	1271	1363
	27	1344	1205	819	694	668	684	721	768	696	769	842	915	989	1062	0	817						1189	1281	1373
	30	1471	1213	823	701	-)	772	845	919	992	1065	1	822				-		1201	1293	1385
	33	1347	1168	805	693		Yf				777	850	923	996	1069	5	828	891	961	939	1031	1123	1216	1308	1400
	36	1244	1137	789	687		VI	ノト		/	783	856	929	1003	1076	9	835	900	970	954	1046	1138	1231	1323	1416
	42	1084	1059	759	673				_		788	861	933	1006	1079	6	843	909	981	969	1062	1154	1247	1340	1433
	48	966	935	732	663					2	795	867	940	1013	1085	0	847	913	985	977	1070	1162	1255	1348	1440
	54	923	899	712	655			== (803	876	948	1021	1094	4	852	918	991	986	1079	1171	1263	1355	1448
	60	948	875	696	650	654	688	731	781	740	813	885	958	1031	1103	8	857	924	996	1076	1088	1180	1272	1364	1456
	66	906	855	687	646	655	691	736	787	750	823	896	969	1041	1114	3	862	930	1003	1083	1097	1189	1281	1373	1464
	72	850	837	679	643	658	696	741	793	761	834	907	980	1053	1126	3	872	939	1012	1092	1174	1198	1290	1382	1473
	78	802	820	672	642	660	697	744	796	768	841	913	986	1059	1131	2	882	949	1022	1102	1184	1208	1299	1391	1482
	84	763	805	665	641	661	700	747	799	775	848	920	993	1065	1138	2	892	959	1032	1112	1194	1277	1309	1400	1492
	90	730	791	660	641	664	703	750	803	863	855	927	999	1072	1144	2	902	969	1042	1121	1203	1287	1319	1410	1501
	96	703	756	655	642	666	706	754	807	867	862	934	1006	1078	1151	2	912	979	1052	1131	1213	1297	1382	1420	1511
	102 108	679	734	662	649	674	714	761	814	875	937	941	1013	1086	1158	3	922	989	1062	1141	1223	1307	1391	1477	1521
		660	723	668	657	681	721	769	822	882	945	949	1021	1093	1165	3	932	999	1072	1152	1233	1317	1401	1487	1531
	114	643	729	675	665	689	729	776	830	890	952	1016	1028	1100	1172	3	943	1010	1082	1162	1244	1327	1411	1497	1583
	120 126	629	734	682	670	697	737	784	837	898	960	1024	1036	1108	1180										
	126	617	740 745	689 691	678	705 712	744	792 800	845	905	968 976	1032	1097	1115	1187										
	132	607 599	745	691	686 694	712	752 760	808	853 861	913 921	976	1039 1047	1105 1112	1171 1178	1195 1203										
	130	599	751	692	701	720	760	816	869	921	963	1047	1120	11/6	1203										
	1.44	532	151	032	701	720	700	010	003	323	331	1000	1120	1100	1200	/									

Plastic Pipe Design

PLASTIC PIPE DESIGN METHOD

AASHTO LRFD Bridge Design Specifications 8th Edition

12.12 Thermoplastic Pipes

Strength Limit States:

- Thrust
- Buckling
- Combined strains

Service Limit States:

Deflection

Also, check flotation

AASHTO LRFD assumes that native soil is stiff and ignores the transfer of load to the in-situ trench walls.

Commentary C12.12.3.5:

The width of structural backfill is an important consideration when the in situ soil in the trench wall or the embankment fill at the side of the structural backfill is soft. Currently, only AWWA Manual M45, The Fiberglass Pipe Design Manual, addresses this issue.

FILL HEIGHT TABLES

Common assumptions used in plastic pipe fill height tables:

- Pipe is installed in accordance with ASTM D2321
- Water table is below the pipe (no hydrostatic pressure)
- Native soil is very stiff

	Maximum Cover						
	JM Eagle Eagle Corr PE (Dual Wall)	Prinsco GoldFlo (Dual Wall)	Haviland Smooth Flow (Dual Wall)	ADS N-12 (AASHTO)			
Example: 48 in. HDPE pipe with Class 2 backfill compacted to 95%	30 ft	24 ft	22 ft	17 ft			

PLASTIC PIPE PROPERTIES

- Pipe performance depends on profile wall geometry which vary significantly
 - Moment of inertia (I)
 - Radius to centroid of pipe profile (R)
 - Spacing of corrugations (ω)
 - Wall area (A_g) and effective wall area (A_{eff})
- Short and long-term mechanical properties vary by type of plastic pipe
 - See LRFD Table 12.12.3.3-1

CONCRETEPIPE.ORG

C12.12.3.2

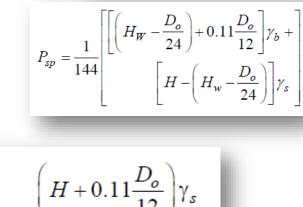
Historically, AASHTO bridge specifications have contained minimum values for the moment of inertia and wall area of thermoplastic pipe; however, these values have been minimum values and are not meaningful for design. This is particularly so since provisions to evaluate local buckling were introduced in 2001. These provisions require detailed profile geometry that varies with manufacturer. Thus, there is no way to provide meaningful generic information on section properties. A convenient method for determining section properties for profile wall pipe is to make optical scans of pipe wall cross-sections and determine the properties with a computer drafting program.

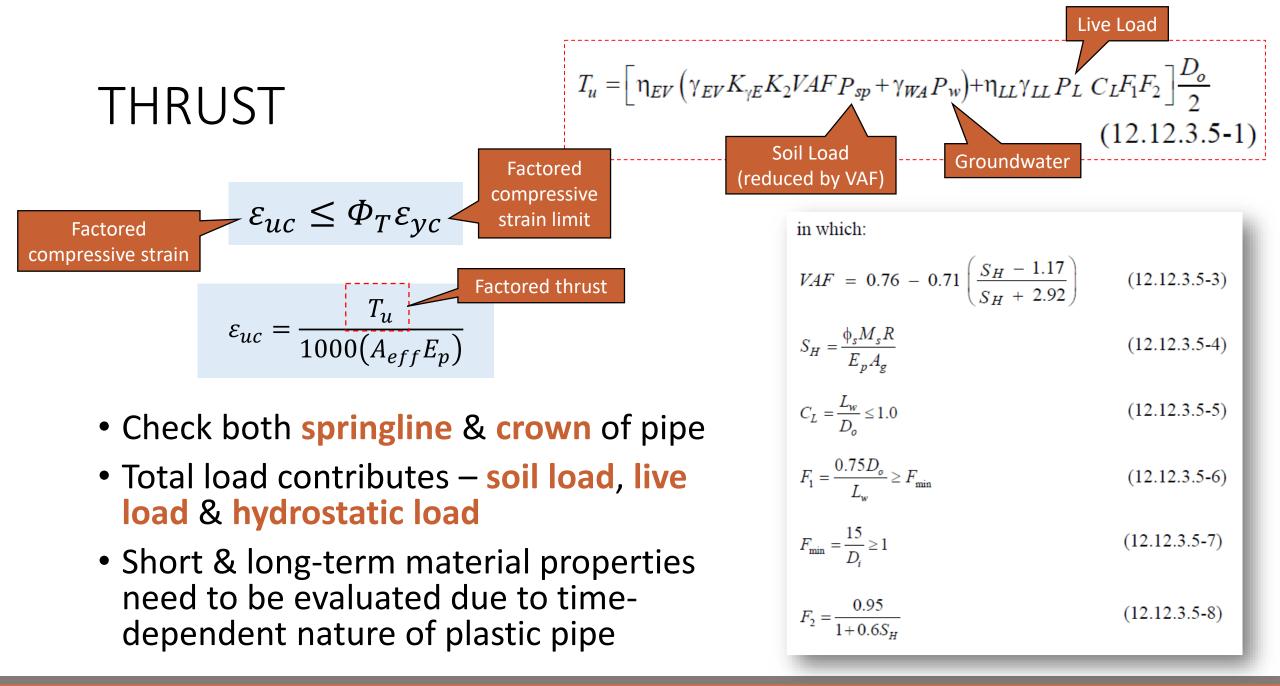
SOIL PRISM PRESSURE (P_{sp})

 P_{sp} is calculated for <u>3 possible conditions</u>:

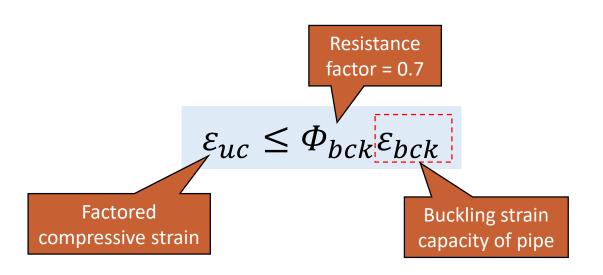
- 1. Water table above top of pipe and at or above the ground surface
- 2. Water table above top of pipe and below the ground surface
- 3. Water table below top of pipe

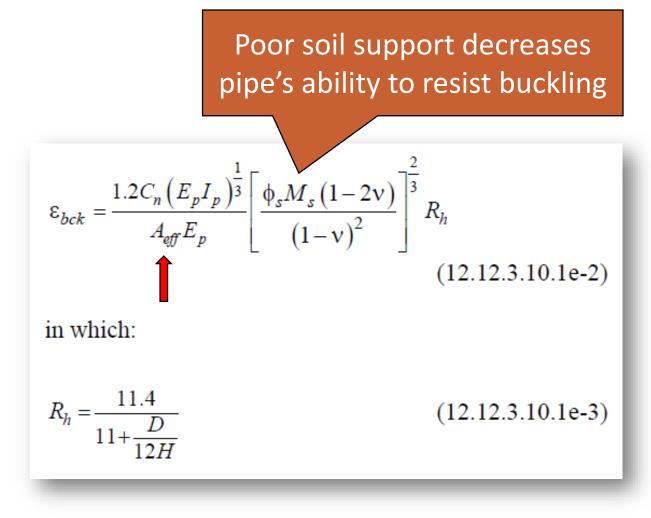
$$P_{sp} = \frac{\left(H + 0.11 \frac{D_o}{12}\right) \gamma_s}{144}$$


*Evaluate multiple conditions if water table fluctuates.

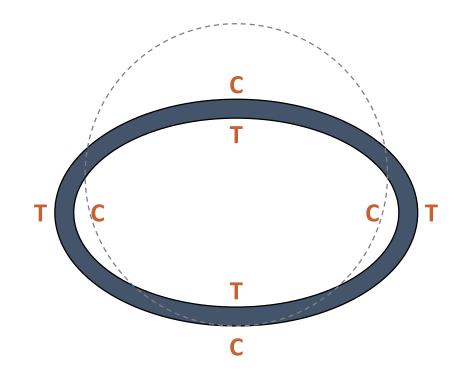

Η

D


 $\left(H+0.11\frac{D_o}{12}\right)\gamma_b$

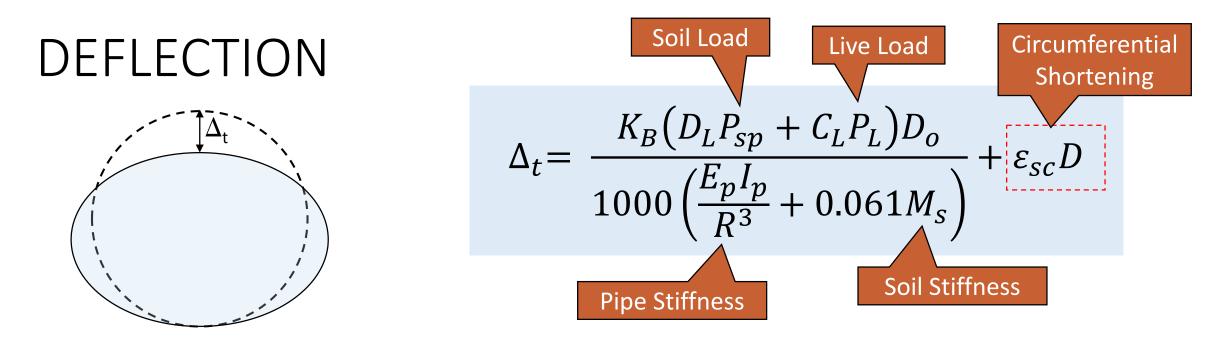


BUCKLING


• Pipe wall must have sufficient stiffness to remain stable under compression loads.

COMBINED STRAINS

 Must check combined strains at extreme fibers since bending strain from deflection creates tension (T) and compression (C) zones


12.12.3.10.2b—Combined Strain

If summation of axial strain, ε_{uc} , and bending strain, ε_{f} , produces tensile strain in the pipe wall, the combined strain at the extreme fiber where flexure causes tension shall satisfy:

$$\varepsilon_f - \varepsilon_{uc} < \phi_f \varepsilon_{yt} \tag{12.12.3.10.2b-1}$$

The combined strain at the extreme fiber where flexure causes compression shall satisfy:

 $\varepsilon_f + \varepsilon_{uc} < \phi_T \left(1.5 \varepsilon_{yc} \right) \tag{12.12.3.10.2b-2}$

- Caused by bending deformation plus circumferential shortening due to thrust
- Controlled by proper soil support and <u>must</u> be verified with a deflection test
- Maximum allowable deflection = 5.0%

SECANT CONSTRAINED SOIL MODULUS (M_s)

- All backfill soils are combined into three broad groups
 - Sn sands and gravels
 - Si silts
 - CI clays
- More useful than E' soil stiffness for deep installations since M_s increases with depth

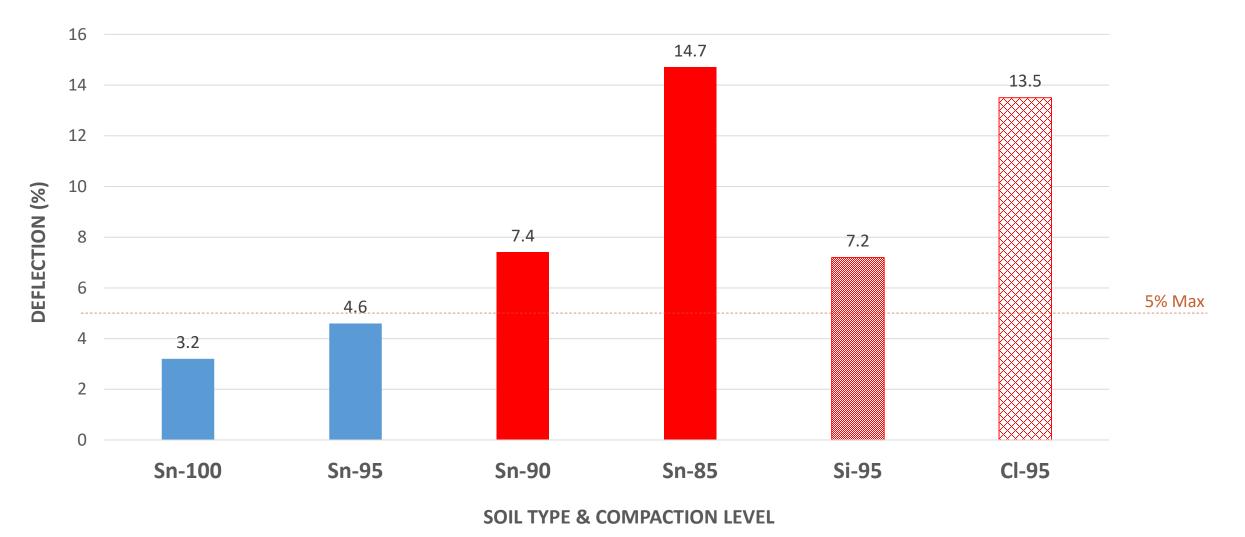
P _{sp} Stress Level (psi)	Sn-100 (ksi)	Sn-95 (ksi)	Sn-90 (ksi)	Sn-85 (ksi)		
1.0	2.350	2.000	1.275	0.470		
5.0	3.450	2.600	1.500	0.520		
10.0	4.200	3.000	1.625	0.570		
20.0	5.500	3.450	1.800	0.650		
40.0	7.500	4.250	2.100	0.825		
60.0	9.300	5.000	2.500	1.000		
P _{sp} Stress Level (psi)		Si-95 (ksi)	Si-90 (ksi)	Si-85 (ksi)		
1.0		1.415	0.670	0.360		
5.0		1.670	0.740	0.390		
10.0		1.770	0.750	0.400		
20.0		1.880	0.790	0.430		
40.0		2.090	0.900	0.510		
60.0				_		
Psp Stress Level		C1-95	C1-90	C1-85		
(psi)		(ksi)	(ksi)	(ksi)		
1.0		0.530	0.255	0.130		
5.0		0.625	0.320	0.175		
10.0		0.690	0.355	0.200		
20.0		0.740	0.395	0.230		
40.0		0.815	0.460	0.285		
60.0		0.895	0.525	0.345		

Table 12.12.3.5-1-M3 Based on Soil Type and Compaction Condition

EMBEDMENT SOIL & DEFLECTION INSTALLATION SENSITIVE !

Given: $D_i = 48 \text{ in.}$ H = 25 ft $P_W = 0 \text{ psi}$ $D_o = 54.26 \text{ in.}$ $K_B = 0.1$ $A_g = 0.441 \text{ in}^2/\text{in}$ R = 25.27 in. $D_L = 1.5$ $A_{eff} = 0.305 \text{ in}^2/\text{in}$ $E_{Pi} = 110 \text{ ksi}$ $C_L = 1.0$ $E_{P75} = 21 \text{ ksi}$ $P_{sp} = 21.2 \text{ psi}$ $I_P = 0.65 \text{ in}^4/\text{in}$ $P_L = 0.336 \text{ psi}$

$$\Delta_t = \frac{K_B (D_L P_{sp} + C_L P_L) D_o}{1000 \left(\frac{E_p I_p}{R^3} + 0.061 M_s\right)} + \varepsilon_{sc} D$$


Various soils @ 95% compaction:

Soil Type & Compaction	M _s	Deflection
Sn-95	3.50	4.6 %
Si-95	1.89	7.2 %
CI-95	0.75	13.5 %

Sn soil with various compaction:

Soil Type & Compaction	M _s	Deflection
Sn-100	5.63	3.2 %
Sn-95	3.50	4.6 %
Sn-90	1.82	7.4 %
Sn-85	0.66	14.7 %

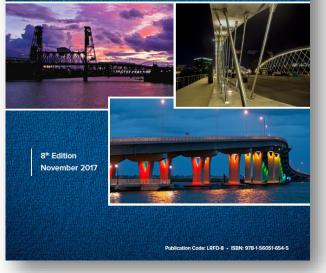
EMBEDMENT SOIL & DEFLECTION



13 Rigid Rugged Resilient

DEFLECTION TESTING

- Plastic pipe requires a deflection test to verify proper soil embedment
- Frequency of deflection tests:
 - No sooner than 30 days after backfill AASHTO Section 30
 - Prior to final acceptance or end of warranty
 - As part of on-going pipe maintenance
- Plastic pipe products have different *Base Inside Diameters*



Load Lag, Deflection Lag, and Time Lag Amster Howard TECH NOTE: Supplement to Pipeline Installation

"... the maximum load on a pipe does not occur until three to six months after backfilling..."

PLASTIC PIPE DESIGN METHOD SUMMARY

AASHTO LRFD Bridge Design Specifications

12.12 Thermoplastic Pipes

Strength Limit States:

- Thrust Compressive limits of the pipe material
- Buckling Dependant on both soil and pipe properties
- Combined strains Material limits with deflection strains added

Service Limit States:

• Deflection – Installation sensitive, verify with deflection test.

Also, check flotation

FUNDAMENTAL DIFFERENCES IN DESIGN

RIGID CONCRETE PIPE

- Standard strength classes
- Indirect or Direct Design
- Primary structure is pipe (60-75%)
- Structure built & tested at plant with 3EB test
- Design life based on historical performance data
- Design software available

FLEXIBLE PLASTIC PIPE

- Wide range of pipe products/profiles
- Direct design only
- Primary structure is soil (50-90%)
- Structure built & tested in field with deflection test
- Design life based on time-dependent behavior of material

THANK YOU