

3

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><section-header><list-item><list-item><list-item><list-item><list-item>

12

Deleterious Substances C 33

7. Deleterious Substances

7.1 The amount of deleterious substances in fine aggregate shall not exceed the limits prescribed in Table 1.

7.2 Organic Impurities:

7.2.1 Fine aggregate shall be free of injurious amounts of organic impurities. Except as herein provided, aggregates subjected to the test for organic impurities and producing a color darker than the standard shall be rejected.

7.2.2 Use of a fine aggregate failing in the test is not prohibited, provided that the discoloration is due principally to the presence of small quantities of coal, lignite, or similar discrete particles.

7.2.3 Use of a fine aggregate failing in the test is not prohibited, provided that, when tested for the effect of organic impurities on strength of mortar, the relative strength at 7 days, calculated in accordance with Test Method C 87, is not less than 95 %.

	Mass % of Total Samp
Clay lumps and friable particles	3.0
Material finer than 75 micron (No. 200) sieve:	
Concrete subject to abrasion	3.0*
All other concrete	5.0*
Coal and lignite:	
Where surface appearance of concrete is of importance	0.5
All other concrete	1.0

Lignite is sometimes found in natural sand. The amount varies, depending on the quarry and the particular deposit. When sand containing lignite is used in making concrete, lignite particles near the surface can expand and cause the pop outs. Lignite is often referred to as brown coal, it is the lowest rank of coal quality.

Deleterious Substances C 33

7. Deleterious Substances

7.1 The amount of deleterious substances in fine aggregate shall not exceed the limits prescribed in Table 1.

7.2 Organic Impurities:

7.2.1 Fine aggregate shall be free of injurious amounts of organic impurities. Except as herein provided, aggregates subjected to the test for organic impurities and producing a color darker than the standard shall be rejected.

7.2.2 Use of a fine aggregate failing in the test is not prohibited, provided that the discoloration is due principally to the presence of small quantities of coal, lignite, or similar discrete particles.

7.2.3 Use of a fine aggregate failing in the test is not prohibited, provided that, when tested for the effect of organic impurities on strength of mortar, the relative strength at 7 days, calculated in accordance with Test Method C 87, is not less than 95 %.

Durability of Materials...Soundness ASTM C 88

Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate¹

1. Scope

1.1 This test method covers the testing of aggregates to estimate their soundness when subjected to weathering action in concrete or other applications. This is accomplished by repeated immersion in saturated solutions of sodium or magnesium sulfate followed by oven drying to partially or completely dehydrate the salt precipitated in permeable pore spaces. The internal expansive force, derived from the rehydration of the salt upon re-immersion, simulates the expansion of water on freezing. This test method furnishes information helpful in judging the soundness of aggregates when adequate information is not available from service records of the material exposed to actual weathering conditions.

<u>Sieve Size</u>	Metric Size	International	
1-1/2"	38 mm	37.5 mm	
1"	25 mm		
3/4"	20 mm	19 mm	· · · · ·
1/2"	12.5 mm		
3/8"	10 mm	9.5 mm	
#4	4.75 mm	4.75 mm	
#8	2.50 mm	2.36 mm	
#16	1.12 mm	1.18 mm	
#30	0.6 mm	0.6 mm	
#50	0.3 mm	0.3 mm	
#100	0.15 mm	0.15 mm	Angrogato Sereen Shakore
#200	0.075 mm	0.075 mm	Aggregate screen snakers

	Fine Aggregate Gra	adation	30
	 Fineness Modulus (FM) should be 	ASTM C 33 Gr	ading for Fine Agg
	between 2.3 and 3.1	Sieve	Percent Passing
	 FM is empirical # 	3/8 in	100
and the start	determined by dividing	No. 4	95-100
The second secon	retained on a standard	No. 8	80-100
11	series of sieves by 100 (No. 4, 8, 16, 30, 50,	No. 16	50-85
	100)	No. 30	25-60
		No. 50	5-30
	 Coarser fine aggregate has a higher FM 	No. 100	0-10
		Am	C) nerican Concrete Pipe Association

Dry Sa	Sample Wt.				
Sa	mple:				
		Retained			
Sieve Size, (mm)	Sieve Size, (US)	Mass, (g)	Ind. % Retained	Cum % Retained	% Passin
150	1 1/2"				
75	1"				
37.5	3/4"				
19	1/2"				
9.5	3/8				
4.75	#4				
2.36	#8				
1.18	#10				
0.0	# 50				
0.15	# 100				
Pan	Pan				
	· un				

- 12	Dry Sa Sa	Dry Sample Wt. 1267 Sample: Retained		g				
	Sieve Size, (mm)	Sieve Size, (US)	Mass, (g)	Ind. % Retained	Cum % Retained	% Passing		
1	150	1 1/2"	0					
and a state of the	75	1"	0					
	37.5	3/4"	0		ASTM	136		
A LAND	19	1/2"	0		If the amou	nts differ		
A	9.5	3/8	0	b	w more than	0.3%.based		
11	4.75	#4	25		on the orig	ainal dry		
	2.36	# 8	163	san	nnle mass. r	esults sho		
	1.18	#16	228		not be	used.		
alater and the second	0.6	# 30	278	(1267	7-1264) / 126	$7 \times 100 = 0$		
and the second se	0.3	# 50	355	(. A 100 – 0		
	0.15	# 100	177			1		
	Pan	Pan	38					
	Total		1264					

Dry Sample Wt. Sample:		1267	g		Use original
					dry mass
		Retained	2		
Sieve Size, (mm)	Sieve Size, (US)	Mass, (g)	Ind. % Retained	Cum % Retained	% Passing
150	1 1/2"	0	0		
75	1"	0	0		(25 / 1267) x 100 - 2
37.5	3/4"	0	0		(237 1207) × 100 - 2
19	1/2"	0	0		
9.5	3/8	0	0		
4.75	#4	25	2.0		\frown
2.36	#8	163	12.9		
1.18	#16	228	18.0		(163 / 1267) x 100 =
0.6	# 30	278	22.0		l
0.3	# 50	355	28.1		·
0.15	# 100	177	14.0		
Pan	Pan	38	3.0		
Total		1264	100		
Sieve Lo	ss Check	0.24%			

Dry San	nple Wt.	1267	g			
San	ple:					
	F	Retained				
Sieve Size, (mm)	Sieve Size, (US)	Mass, (g)	Ind. % Retained	Cum % Retained	% Passing	100 - 2 = 98
150	1 1/2"	0	0	0	100	
75	1"	0	0	0	100	7/
37.5	3/4"	0	0	0	100	
19	1/2"	0	0	0	100	//
9.5	3/8	0	0	0	100	/
4.75	#4	25	2.0	2.0	98.0	
2.36	#8	163	12.9	14.9	85.1	
1.18	#16	228	18.0	32.9	67.1	100 - 14.9 = 85
0.6	# 30	278	22.0	54.9	45.1	
0.3	# 50	355	28.1	83.0	17.0	
0.15	# 100	177	14.0	97.0	3.0	
Pan	Pan	38	3.0			
Total		1264	100	2.85 FM		
Sieve Lo	ss Check	0.24%				

	Dry Sample Wt.		g	Can	vou use th	nis SAND) to
San	nple:			man	ufacture P		r C76
		Retained			1 1		
Sieve Size, (mm)	Sieve Size, (US)	Mass, (g)	Ind. % Retained	Cum % Retained	% Passing	ASTM C3 Aggr	3 6.1 Fin egate
						Min	Max
150	1 1/2"	0	0	0	100	100	100
75	1"	0	0	0	100	100	100
37.5	3/4"	0	0	0	100	100	100
19	1/2"	0	0	0	100	100	100
9.5	3/8	0	0	0	100	100	100
4.75	# 4	25	2.0	2.0	98.0	95	100
2.36	# 8	163	12.9	14.9	85.1	80	100
1.18	#16	228	18.0	32.9	67.1	50	85
0.6	# 30	278	22.0	54.9	45.1	25	60
0.3	# 50	355	28.1	83.0	17.0	5	30
0.15	# 100	177	14.0	97.0	3.0	0	10
Pan	Pan	38	3.0				
Fotal		1264	100	2.85 FM		FM 2.3	FM 3

Dry Sa	mnlo W/t	1001	~				
Diy Sai Sar	mple wt.	1091	5				
Jai	iipie.	Potained					
Sieve Size, (mm)	Sieve Size, (US)	Mass, (g)	Ind. % Retained	Cum % Retained	% Passing	ASTM C33 6.1	Fine Aggregate
						Min	Max
150	1 1/2"	0	0	0	100	100	100
75	1"	0	0	0	100	100	100
37.5	3/4"	0	0	0	100	100	100
19	1/2"	0	0	0	100	100	100
9.5	3/8	0	0	0	100	100	100
4.75	#4	90	8.3	8.3	91.7	95	100
2.36	# 8	251	23.1	31.4	68.6	80	100
1.18	#16	230	21.1	52.5	47.5	50	85
0.6	# 30	190	17.5	70.0	30	25	60
0.3	# 50	240	22.1	92.1	7.9	5	30
0.15	# 100	77	7.1	99.2	0.8	0	10
Pan	Pan	10	0.9				
Total		1088	100	3.54		FM 2.3	FM 3.1
Sieve L	oss Check	0.275%					

T-4-137.1				-		and the second	COD C				
Total Vol.				S	pecific gr	avity of	SSD Sar	nd			
	2.50	2.52	2.54	2.56	2.58	2.60	2.62	2.64	2.66	2.68	2.70
385	-	-	-	-	-	-	-	•	-	-	0.0
386	-	-	-	-	-	-	-	_ -	-	-	0.3
387	-	-	-	-	-	-	-	V -	-	0.0	0.6
388	-	-	-	-	-	-	-	-	0.0	0.3	1.0
389	-	-	-	-	-	-	-	0.0	0.3	0.6	1.3
390	-	-	-	-	-	-	-	0.3	0.6	1.0	1.7
391	-	-	-	-	-	-	0.0	0.6	1.0	1.3	2.0
392	-	-	-	-	-	0.0	0.3	1.0	1.3	1.7	2.3
393	-	-	-	-	-	0.3	0.6	1.3	1.7	2.0	2.7
394	-	-	-	-	0.0	0.6	1.0	1.7	2.0	2.3	3.0
395	-	-	-	0.0	0.3	1.0	1.3	2.0	2.3	2.7	3.3
396	-	-	-	0.3	0.6	1.3	1.7	2.3	2.7	3.0	3.7
397	-	-	0.0	0.6	1.0	1.7	2.0	2.7	3.0	3.3	4.0
398	-	0.0	0.3	1.0	1.3	2.0	2.3	3.0	3.3	3.7	4.3
399	-	0.3	0.6	1.3	1.7	2.3	2.7	5.5	3.7	4.0	4.7
400	0.0	0.6	1.0	1.7	2.0	2.7	3.0	3.7	4.0	4.3	5.0
401	0.3	1.0	1.3	2.0	2.3	3.0	3.3	40	4.3	4.7	5.3
402	0.6	1.3	1.6	2.3	2.7	3.3	3.7	4.3	4.7	5.0	5.7
403	1.0	1.6	2.0	2.7	3.0	3.7	4.0	4.7	5.0	5.3	6.0
404	1.3	2.0	2.3	3.0	3.3	4.0	4.3	5.0	5.3	5.7	6.5
405	1.6	2.3	2.7	3.3	3.7	4.3	4.7	5.3	5.7	6.0	7.0
406	2.0	2.7	3.0	3.7	4.0	4.7	5.0	5.7	6.0	6.5	7.3
407	2.3	3.0	3.3	4.0	4.3	5.0	5.3	6.0	6.5	7.0	7.7
408	2.7	3.3	3.7	4.3	4.7	5.3	5.7	6.5	7.0	7.3	8.0
409	3.0	3.7	40	47	5.0	5.7	6.0	7.0	73	7.7	83

Materials	Pounds of Material	S.G.	Abs Volume	SSD	Moisture Adjustment	Batch Weigh
Cement	400	3.15	2.04	400		400
Type F Ash	100	2.48	0.65	100		100
Miller Stone	1873	2.85	10.53	1873	37	1910
Evert Sand	1247	2.62	7.63	1247	50	1297
Water	300	1.00	4.81	300	87	213
Air	5%		1.35	5%		
Total	3920		27.00			3920
Density	145.2					145.2
Materials	Total Moisture %		Absorp %	tion	Free %	Moistu Adjustm
Miller Stone	3.00		1.00)	2.00	37
Evert Sand	5 50		1.50	1	4.00	- 50

63

C)

Specific Gravity

- The relative density of a material compared to water
- The ratio of a material's weight to the weight of an equal volume of water
- Bulk specific gravity (SSD):
 - Used to determine the "solid volume" (absolute volume) of a material going into concrete
 - It is determined by submerging the material in water for 24 hours in order to fill any permeable voids
- Absorption is the penetration liquid into aggregate particles
- Test Procedures: ASTM C 127 for CA and C 128 for FA
- Not a measure of quality
- Ensures proper yield
- SG of normal weight aggregates vary from 2.40 to 2.80

