

Agenda

- Terminology
 - Manufacturing 。Fittings Methods
 - Manholes
 - ASTM
 Specifications
 - Sizing
 - Flotation
 - Pipe Joints
 - Pipe Testing

Manufacturing Methods

- Wet Cast
- Dry Cast

Manufacturing Methods

○ Wet Cast- Uses a concrete mix that is wet relative to the mixes used in other processes. Usually contains a slump less than 4 inches and used for production of large diameter pipe.

- Dry Cast- Uses a concrete mix with zero slump. The method has several variations but all use low frequency-high amplitude vibration to distribute and densely compact dry mix in the form.

Two Methods of Dry Cast Manufacturing

Packerhead

Dry Cast
o Internal Hydraulic
o External Pneumatic Electric Hydraulic

Dry Cast 84"x 16'

Dry Cast Box Culvert

3 Types of ASTM Standards

-Manufacturing

- Testing
oInstallation

Manufacturing Specifications

- C-14 - Non-reinforced Concrete Pipe
- C-76 - Reinforced Concrete Pipe
- C-361 - Low Pressure RCP
- C-443 - Rubber Gasket Joints for RCP
- C-478 - Manholes
- C-506 - Arch RCP
- C-507 - Elliptical RCP
- C-1433 - Precast Box Culverts

Replaced C-789 \& C-850

Pipe Design Considers Installation

Note from ASTM C76: This specification is a manufacturing and purchase specification only, and does not include requirements for bedding, backfill, or the relationship between field load condition and the strength classification of pipe. However, experience has shown that the successful performance of this product depends upon the proper selection of the class of pipe, type of bedding and backfill, and care that installation conforms to the construction specifications. The owner of the reinforced concrete pipe specified herein is cautioned that he must correlate the field requirements with the class of pipe specified and provide inspection at the construction site.

Test Specifications

- C-497 - Test Methods for RCP \& MH
- 3 Edge Bearing
- Core \& Cylinder Strength
- Hydrostatic Test
- C-924 - Low Pressure Air Testing, up to 24"
- C-969 - Infiltration/Exfiltration Test of Installed Concrete Pipe
- C-1214 - Vacuum Testing of Installed Pipe
- C-1244 - Vacuum Testing of Installed MH

Installation Specifications

- C-1479 - Installation of RCP Using Standard Installations
- Companion Design Spec w/ ASCE 15
- Section 27 of AASHTO LRFD Bridge Construction Specifications

Joints

The links that make the system whole

Additional Info in the Concrete Design Manual - click here

Bell \& Spigot or Tongue \& Groove What's the Deal?

Female end of pipe (bell, groove) - portion of the end of the pipe, regardless of shape, which overlaps a portion of the end of the adjoining pipe

Male end of pipe (spigot, tongue) - portion of the end of the pipe, regardless of shape, which is overlapped by portion of the end of the adjoining pipe

Arch \& Elliptical Shapes

Define the Service Requirements

- Soil Tight
\circ Silt Tight
- Watertight gravity
- Watertight pressure

Soil Tight/ Silt Tight

- Storm drains and culverts only!
o Intended to preclude soil / silt transfer through joint
- Non-precision joint
- Mastic sealant
- Preformed butyl sealant
- Mortar Joint
- Fabric
- External Wrap
- ASTM C990

Soil Tight Joint

Soil Tight Joint with Fabric

Pushing Box Joint Home

Soil Tight/Silt Tight Joint with External Wrap

ASTM C877

Soil/ Silt Tight Joint

Soil Tight Joint

Watertight - Gravity*

- Precision Joint

- O-Ring gasket

Profile gasket

- ASTM C443
- ASTM C1628
* Tested to zero leakage in the manufacturing plant

Watertight - Gravity Joint

Confined Gasket - O-Ring or Profile

Watertight - Gravity Joint

Offset Spigot - Profile Gasket

Watertight - Gravity Joint

Watertight - Pressure

- Precision Joint
- O-Ring gasket
o ASTM C361

Steel Joint Ring Pipe

Gasket materials

- Polyisoprene - standard use
- Chloroprene - moderate hydrocarbon resistance
o Nitrile / Viton - high hydrocarbon resistance

o-ring gasket

profile gasket

Joint Testing

Ensures joint integrity after installation

ASTM C497

○Bevels / Radius, not always available

 -Bends oTeesNOTE: Check supplier for availability
Additional Info in the Concrete Design Manual - click here

Bevels / Radius Pipe or Boxes

Design Data 21

Curved Alignment

Additional Info. - Click Here

Figure 3 Radius Pipe

Figure 4 Curved Alignment Using Radius Pipe

Projection of joinss do not cotrwetpe at common point, but aro thingerts to a common circle whose diameter is equal to pipe length.

Fittings

- Bends
- Tees/Wyes
- Reducers/
- Increasers
- Adapters

Fittings

- Bends
- Tees/Wyes
- Reducers/Increasers - Adapters

Manholes

\circ Testing

\circ Sizing

- Flotation
- Connectors \& Joint Sealants

○ Depth - Round or Square

Additional Design Data - Click Here
Additional Info in the Concrete Design Manual - click here

Vacuum Testing Manholes ASTM C-1244

Standard Test Method for Concrete Sewer Manholes by the Negative Air Pressure (Vacuum) Test Prior to Backfill ${ }^{1}$

This stastard is issued under the fund designation C 1244; the number immedately followigg the designasion indicates the year of onginal adopoion or, it the case of revisios, the year of last revision. A mumber in purenteses indeates the year of last reapporal. A sapencript eprilon (o) indiates an editorial change since the hast revision or reappoonal.

1. Scope

1.1 This test method covers procedures for testing precast concrete manhole sections when using the vacuum test method to demonstrate the integrity of the installed materials and the construction procedures. This test method is used for testing concrete manhole sections utilizing mortar, mastic, or gasketed joints.
1.2 This test method is intended to be used as a preliminary test to enable the installer to demonstrate the condition of the concrete manholes prior to backfill.
1.3 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regularory limitations prior to use.

14 This tect mathond is the mommanion to matrin Thest

C 969 Practice for Infiltration and Exfiltration Acceptance Testing of Installed Precast Concrete Pipe Sewer Lines

3. Terminology

3.1 For definitions of terms relating to manholes, see Terminology C 822.

4. Summary of Practice

4.1 All lift boles and any pipes entering the manhole are to be plugged. A vacuum will be drawn and the vacuum drop over a specified time period is used to determine the acceptability of the manhole.

5. Significance and Use

5.1 This is not a routine test. The values recorded are applicable only to the manhole being tested and at the time of

Manhole Flotation

Additional Design Data - Click Here

Design Data 41

Manhole Flotation

Introduction

The proper fanctioning of a semenr syutem is soguntint to \bar{i} tarpe degree ipn the performence of ita appurterances, and especiafy his marheles. As with many boried atrucheres, the proper design of maveloles hiould take itho acoourt fee effect of the water tatlo and ins ipeoific athoct os instatianoh and opetaing condtione

The Buoyancy Concept
Fromirnid dyamies standperit, ina buoynent forse acting on a sitimenizad obloct for egual to the wevite of Buld which that obpoct dinploces. In the rase of a taried shuctire in marthole, this conoept is eppecetie when a

 weas At win the desgh of burkel pips, notakion Mhoxid sechuckei mand font ach as whe ub or focoling
 drainage chavnges are anticenatect.

Manhole Buoyancy Analyais

Vertical murnole sinuchives of two trpee (1) igues I) गW germitity conntucred, and esech typer ihouks the contichersal when analyruig the fiotation potertial The
 tuse does ret exlevd pasit the walls of the markede. This strichurs wit be called a sumopth-wal manhige mistation Brooth-wall rarfolisithre the wioht of he stuchesisell and he dowesemert ficcional tmenteroe of the end wammandingite manhole to resist ite op-ant twoyant fore forme marnfoct rers and donigners vil to dsterded hase to privile additional resintance ac in estereled has hurvind torces. Theses structires we consuceled =ilh a

Fivurs 1 - Manete hatriations
Croses Fiection of Ratiendeat liase Manhole Installation

Manhole Sizing

oFlexibility
 -Handling
 -Weight

SIZING MANHOLES

MULTIPLE HOLES AT SAME ELEVATION

MH Dia.	M, in/deg
$48^{\prime \prime}$	0.4189
$60 "$	0.5236
$72 "$	0.6283
$84 "$	0.7330
$96 "$	0.8378

$M \times$ Angle $=Y$
Y - Pipe \#1 Opening/2 - Pipe \#2 Opening/2 = a
A = Distance between the two openings
Minimum "a" is ≥ 6 " for 48" - 72" Dia. MH and ≥ 8 " for \geq *4" Dia. MH

Example:
Pipe \#1 = 36" RCP "B" Wall @ 6:00
Pipe \#2 = 36" RCP "B" Wall @ 3:00
Angle $=90^{\circ}$
Try 72" Dia. MH
$\mathrm{Y}=0.6283 \times 90^{\circ}=56.55$
A $=56.55^{\prime \prime}-53 / 2-53 / 2=3.55^{\prime \prime}<6^{\prime \prime}$; too small
Therefore, try 84" Dia. MH:
$\mathrm{Y}=0.7330 \times 90^{\circ}=65.97^{\prime \prime}$
A = 65.97" $-51 / 2-51 / 2=14.97^{\prime \prime}>8^{\prime \prime} ;$ OK

Pipe \#1

Pipe Dia., in.	Hole chord Dim., in.	Hole Size (Arc) per MH Diameter, in.					
	48	$60 " \varnothing$	$70 " \varnothing$	$84 " \varnothing$	$96 " \varnothing$		
12	20	20.5	20.4	20	20	20	
15	24	25	25	24.5	24	24	
18	27	29	28	28	27.5	28	
224	34	38	36	35	35	35	
30	41		45	43	43	45	
36	$48 / 50$		$55.5 / 59$	$5 . / 55$	$51 / 53.5$	$50 / 53$	
42	$55 / 57$		$70 / 75$	$63 / 66$	$60 / 63$	$59 / 61$	
48	$62 / 64$			$75 / 79$	$70 / 72.5$	$67 / 70$	
54	71				84	80	
60	78					91	
66	85					105	

Note: Where two dimensions are shown, l.e. 48/50, the first one is for " B " Wall pipe and the second one is for " C " Wall pipe. Use the Arc length for calculations.

Concrete Pipe Design Basics

Fact :
Buried Pipe Must Perform Two Critical Functions

Unstable Foundation!

How do we define the strength of concrete pipe?

D-Load? 3-Edge Bearing

Class

Wall Thickness \& Reinforcement

- A-Wall - Wall thickness in inches $=$ Diameter in feet
- B-Wall - Wall thickness in inches = Diameter in feet +1"
- C-Wall - Wall thickness in inches = Diameter in feet +1.75"

○ 24" Pipe = 3" Wall

○ 24" Pipe = 3.75" Wall
○ 24" Pipe = 2" Wall

Three-Edge-Bearing

Applied Load

ASTM C76, C506, C507 ASTM C497

Test Specimen

Support

D-Load

Supporting strength of a pipe loaded under three-edge bearing test conditions, expressed in pounds per linear foot per foot of inside diameter or horizontal span when tested according to ASTM C497.
$\mathrm{D}_{0.01}=$ load (lbs/ft. span/ft. length) to produce 0.01" crack, 12" long
$\mathrm{D}_{\mathrm{ULT}}=$ load (lbs/ft. span/ft. length) to cause structural
 failure

Gravity Pipe Classes

AASHTO M170
 ASTM C76

Class	D-Load .01	D-Load Ul
I	800	1200
II	1000	1500
III	1350	2000
IV	2000	3000
V	3000	3750

60" ASTM C-76 Class IV 8'

$$
\begin{aligned}
& D_{0.01}=2000 \\
& D_{U L T}=3000
\end{aligned}
$$

Total Load Required:

$$
\begin{aligned}
\mathrm{D}_{0.01} & =(60 / 12)(8)(2000) \\
& =80,000 \mathrm{lbs} . \\
\mathrm{D}_{\mathrm{ULT}} & =(60 / 12)(8)(3000) \\
& =120,000 \mathrm{lbs} .
\end{aligned}
$$

30,000 los.

Additional Design Data - Click Here

Selection of Pjpe Strength

$D-1 o a d_{.01}=\left(\frac{W_{E}}{B_{F E}}+\frac{W_{L}}{B_{F L}}\right) \times\left(\frac{F S}{D}\right)$
Where:
D-Load $.01=$ Required structural capacity, Ib./ft. ${ }^{2}$
$W_{E}=$ Earth load, Ib./ft.
$W_{L}=$ Live load, Ib./ft.
D = Pipe diameter, ft.
$B_{F E}=$ Earth Load Bedding Factor
$B_{F L}=$ Live Load Bedding Factor
FS = Factor of safety

Gravity Pipe Classes

AASHTO M170
 ASTM C76

Class	D-Load .01	D-Load Ul
I	800	1200
II	1000	1500
III	1350	2000
IV	2000	3000
V	3000	3750

Bedding Factor depends on type and quality of installation

Standard Installations - Click here

Who Is Responsible for Bedding Factor?

- Engineer via specification, inspection and testing
- Contractor via installation means and methods
- Inspector via inspection and testing

Additional Info in the Concrete Design Manual - click here

How do we design concrete pipe?

System Design

Structure

System Design

Structure

Design Basics

Installation
Methodology \&
Earth Load Determination

Additional Info in the Concrete Design Manual - click here

Pipe Installation Methods

- Trench
- Positive projection embankment
- Negative projection embankment

○ Jacked, bored, or tunneled
Additional Info in the Concrete Design Manual - click here

Trench
 Negative Projecting

Positive Projecting

Tunnel

Positive Projecting Embankment

Final Grade

Existing Grade

Positive Projecting Embankment

Trench

Existing and Final Grade

Trench

Negative Projecting Embankment

Final Grade

Existing Grade

Negative Projecting Embankment

Trenchless

Installation (embedment) Types or Classes

Standard Installations

Standard Installations - ASTM \& AASHTO

Installation Type
Type I

Type 2

Type 3

Type 4

Bedding Thickness
$\mathrm{D}_{\mathrm{o}} / 24$ minimum, not less than 3 in . (75 mm). If rock foundation, use $\mathrm{D}_{\mathrm{o}} / 12$ minimum, not less than 6 in . $(150 \mathrm{~mm})$. $\mathrm{D}_{\mathrm{o}} / 24$ minimum, not less than 3 in. (75 mm). If rock foundation, use $\mathrm{D}_{\mathrm{o}} / 12$ minimum, not less than 6 in. (150 mm). $\mathrm{D}_{\mathrm{o}} / 24$ minimum, not less than 3 in . (75 mm). If rock foundation, use $\mathrm{D}_{\mathrm{o}} / 12$ minimum, not less than 6 in. (150 mm).
No bedding required except if rock foundation, use $D_{\mathrm{o}} / 12$ minimum, not less than 6 in . (150 mm).

Haunch \& Outer Bedding
95\% Category I

90\% Category I
95\% Category II

85\% Category I
90\% Category II 95\% Category II

No compaction required, except if Category III, use 85%

Lower Side
90\% Category I
95\% Category II
100\% Category III

85\% Category I
90\% Category II
95\% Category III

85\% Category I
90\% Category II
95\% Category III

No compaction required, except if Category III, use 85%

Standard Installations

Options for Finding Required Pipe Strength

○ Plug \& chug blue book

- Fill height tables
- Computer software PipePac 2000

Steps for Determining the Required Pipe Strength

○ 1 - Select the method of installation (trench, embankment, etc.)

- 2 - Determine the earth load (Installation Type: 1-4)
- 3 - Determine the live load
- 4-Determine the bedding factor (installation type: 1 -4)
- 5-Calculate the required D-Load
- 6-Specify the class

$$
\text { D-load }_{.01}=\left(\frac{W_{E}}{B_{F E}}+\frac{W_{L}}{B_{F L}}\right) \times\left(\frac{F S}{D}\right)
$$

Step 1

Determine the Method of Installation

Additional Info in the Concrete Design Manual - click here

Step 2

Determine Earth Load

Additional Info in the Concrete Design Manual - click here

* For beckfill waighing 110 pounds per cublo foot, incroase loads 10\%; for 120 pounds per oubv Δ Transition loads (bold type) and widths based on $K \mu-0.19$, Isdp- 0.5 in the ambankment equ Interpolate for intermediate heights of backNW and/or trench wioths

$W_{E}=$ VAF \times PL

○ VAF - Vertical Arching Factor

- Type 1
- Type 2
- Type 3
- Type 4
$V A F=1.40$
VAF $=1.40$
$V A F=1.45$
\bigcirc PL - Prism Load, the weight of the column of earth cover over the pipe outside diameter

Step 3

Determine the Live Load

Additional Info in the Concrete Design Manual - click here

Live Load Sources

- Highway loads
- Railroad loads
- Aircraft loads
- Construction loads
- Other

HIGHWAY LOADS ON CIRCUULAR PIPE
POUNDS PER LINEAR FOOT

		B_{C}			HEIGH	T OF F	FILL H	H ABO	VE TOP	OP OF PI	PIPE I	FEE					
		(ft.)	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	5.0	6.0	7.0	8.0	9.0		
	12	1.33	3780	2080	1470	1080	760	550	450	380	290	230	190	160	130	12	
	15	1.63	4240	2360	1740	1280	900	660	540	450	350	280	230	190	160	15	
	18	1.92	4110	2610	1970	1460	1030	750	620	520	400	320	260	220	190	18	
	21	2.21	3920	2820	2190	1620	1150	840	690	580	450	360	300	250	210	21	
	24	2.50	4100	3010	2400	1780	1270	930	760	640	500	400	330	280	240	24	
	27	2.79	3880	2940	2590	1930	1380	1010	830	700	560	440	360	300	260	27	
	30	3.08	3620	2830	2770	2070	1480	1080	890	750	590	480	390	330	280	30	
	33	3.38	3390	2930	2950	2200	1580	1160	960	810	630	510	420	360	300	33	
∞	36	3.67	3190	2810	2930	2330	1670	1230	1020	860	670	550	450	380	330	36	믈
ய	39	3.96	3010	2670	2850	2440	1760	1290	1070	910	710	580	480	410	350	39	7
U	42	4.25	2860	2550	2770	2560	1840	1360	1130	950	750	610	510	430	370	42	m
$\underline{2}$	48	4.83	2590	2330	2620	2480	1990	1470	1230	1040	820	670	560	470	410	48	$\frac{\mathrm{C}}{\mathrm{N}}$
Z	54	5.42	2360	2150	2490	2360	2050	1580	1320	1120	890	730	610	520	440	54	N
\leq	60	6.00	2170	1990	2450	2250	1960	1680	1400	1190	950	780	650	560	480	60	0
0	66	6.58	2010	1850	2520	2160	1880	1640	1480	1260	1010			590	510	66	₹
N	72	7.17	1870	1730	2580	2190	1810	1570	1510	1330	1060					72	2
$\frac{\mathrm{N}}{\sim}$	78	7.75	1750	1630	2630	2240	1770	1520	1460	1390	1110						
-	84	8.33	1650	1540	2730	2290	1810	1460	1410	1360	1160						
믈	90	8.92	1550	1460	2530	2330	1850	1470	1360	1310	1210						
-	96	9.50	1470	1380	2410	2290	1880	1500	1330	1270	125						
	102	10.08	1390	1320	2300	2190	1910	1530	1350	1240	129						
	108	10.67	1320	1260	2200	2090	1830	1560	1380	1230	133						
	114	11.25	1260	1200	2110	2010	1760	1540	1410	1260	136						
	120	11.83	1210	1150	2020	1930	1700	1480	1420	1280	14				ur		
	126	12.42	1160	1100	1940	1860	1640	1430	1380	1300	1						
	132	13.00	1110	1060	1870	1800	1580	1380	1330	1290	1						
	138	13.58	1070	1020	1800	1730	1530	1340	1290	1250							
	144	14.17	1020	980	1740	1670	1480	1300	1250	1210	1						
DATA:		Unsurfe oads- oading.	ed roa ASH our 12		20, two b. dual	o 16,000 -tired	000 lb. wheels	dual-ti s. 4 ft .	ired wh on cen	heels, ters w							
NOTES:		interpol Critical a. Fo b. For c. Fo Truck live	for loads: $H=0.5$ $H=1$. $H>4.0$ loads	interme 5 and 1. throue ft. alter for $H=$	ediate $1.0 \mathrm{ft} .$, ugh 4.0 ternate $=10.0$	pipe si a sing ft., two loadin ft . or		nd/or 000 lb. 00 lb. re insi	fill heig dual-t dual-ti gnifice	ghts. ired wt red wh ant.				Wh			

Step 4

Determine the Bedding Factor

Additional Info in the Concrete Design Manual - click here

Bedding Factors, Embankment Conditions

Pipe		Standard Installation		
Diameter	Type 1	Type 2	Type 3	Type 4
12 in.	4.4	3.2	2.5	1.7
24 in.	4.2	3.0	2.4	1.7
36 in.	4.0	2.9	2.3	1.7
72 in.	3.8	2.8	2.2	1.7
144 in.	3.6	2.8	2.2	1.7

Notes:

1. For pipe diameters other than listed in Illustration 4.21, embankment condition factors, $B_{f e}$ can be obtained by interpolation.
2. Bedding Factors are based on the soils being placed with the minimum compaction specified in Illustration 4.4 for each standard installation.

Step 5

Calculate the Required D-Load

Additional Info in the Concrete Design Manual - click here

Selection of Pjpe Strength

$D-1 o a d_{.01}=\left(\frac{W_{E}}{B_{F E}}+\frac{W_{L}}{B_{F L}}\right) \times\left(\frac{F S}{D}\right)$
Where:
D-Load $.01=$ Required structural capacity, Ib./ft. ${ }^{2}$
$W_{E}=$ Earth load, Ib./ft.
$W_{L}=$ Live load, Ib./ft.
D = Pipe diameter, ft.
$B_{F E}=$ Earth Load Bedding Factor
$B_{F L}=$ Live Load Bedding Factor
FS = Factor of safety

Step 6

Select the Class

Gravity Pipe Classes

ASTM C76

Class
II
III
1350
2000
3000

D-Load ult. 1200

1500
2000

3000
3750

Fill Height Tables

Installation Type
Type 1

Bedding Thickness
$\mathrm{D}_{\mathrm{o}} / 24$ minimum, not less than 3 in. (75 mm). If rock foundation, use
$\mathrm{D}_{\mathrm{o}} / 12$ minimum, not less than 6 in. (150 mm).

Haunch \& Outer Beddding
95\% Category I

Lower Side 90\% Category I 95\% Category II 100\% Category III

Fill Height Tables are basad on:

1. A soilweght of 120 ban'
2. ASHTO HSTO be had
3. Embanionent installation

Type 1 Bedding

Fill Height (foet)															
Pipsid. (inctes)	1	2	1	4	5	6	7	1	5	10	11	12	13	4	15
12	1125	600	425	375	375	400	400	475	500	650	575	625	675	725	750
15	1050	575	400	375	375	400	425	450	500	525	575	625	650	700	750
18	1000	550	400	375	375	400	425	450	500	525	575	600	650	700	750
21	950	525	375	350	375	400	425	450	475	525	575	600	650	700	750
24	925	525	375	350	375	400	425	450	475	525	575	625	650	700	750
27	875	500	375	350	375	400	425	450	500	625	575	626	675	700	750
30	825	500	375	350	375	400	425	450	500	525	575	625	675	725	775
33	775	475	375	350	375	400	425	450	500	625	575	625	675	725	775
36	750	475	350	350	375	400	425	450	500	650	600	625	675	725	775
42	650	475	350	350	375	400	425	450	500	550	600	650	675	725	775
48	600	450	350	350	375	400	425	450	500	650	600	650	700	750	800
54	575	400	350	350	375	400	425	475	500	550	600	650	700	750	800
60	550	400	350	350	375	400	425	475	500	550	600	650	700	750	800
66	525	375	325	350	375	400	425	475	525	575	625	650	700	750	800
72	525	375	325	350	375	400	425	475	525	575	625	675	725	775	825
78	475	375	325	350	375	425	450	475	525	575	625	675	725	775	825
84	450	375	325	350	375	425	450	475	525	575	625	675	725	775	825
90	400	375	325	350	375	425	450	500	525	600	625	675	725	775	825
96	375	375	335	350	375	425	450	500	550	600	650	700	750	800	850

Fill Height Tables are basod on:

1. A soilweigh of $120 \mathrm{Lnh}{ }^{3}$
2. ASHTO HSCO be hal
3. Entanknert installation

Fill Height flost)															
Pipe id. (inchese)	16	17	11	19	20	21	22	23	24	25	26	27	21	29	30
12	800	850	900	950	1000	1050	1100	1150	1200	1250	1300	1350	1400	1450	1500
15	800	850	900	950	275	1025	1075	1125	1175	1225	1275	1325	1375	1425	1475
18	800	850	900	925	975	1025	1075	1125	1175	1225	1275	1325	1375	1425	1475
21	800	850	900	925	975	1025	1075	1125	1175	1225	1275	1325	1375	1425	1450
24	800	850	900	950	975	1025	1075	1125	1175	1225	1275	1325	1375	1425	1475
27	500	850	900	950	1000	1025	1075	1125	1175	1225	1275	1325	1375	1425	1475
30	800	850	900	950	1000	1050	1100	1150	1200	1250	1300	1325	1375	1425	1475
33	800	850	900	950	1000	1050	1100	1150	1200	1250	1300	1350	1400	1450	1500
36	825	875	925	975	1025	1050	1100	1150	1200	1250	1300	1350	1400	1450	1500
42	825	875	925	975	1025	1075	1125	1175	1225	1275	1325	1375	1425	1475	1525
48	825	875	925	975	1025	1075	1125	1175	1225	1275	1325	1375	1425	1475	1525
54	825	875	925	975	1025	1075	1125	1175	1225	1275	1325	1375	1425	1475	1525
60	850	900	950	1000	1050	1100	1150	1200	1250	1300	1350	1400	1450	1500	1550
66	850	900	950	1000	1050	1100	1150	1200	1250	1300	1350	1400	1450	1500	1550
72	850	925	950	1000	1050	1100	1150	1200	1250	1300	1375	1425	1475	1525	1575
78	875	925	975	1025	1075	1125	1175	1225	1275	1325	1375	1425	1475	1525	1575
84	875	925	975	1025	1075	1125	1175	1225	1275	1325	1375	1425	1475	1525	1575
90	875	925	975	1025	1075	1125	1175	1225	1275	1325	1375	1425	1475	1525	1600
96	875	925	975	1025	1075	1125	1175	1250	1300	1350	1400	1450	1500	1550	1600

Fill Height Tables are banad on:

1. A soilwoiph of 120 bent
2. ASHTO 1520 he lad
3. Embarivnent installatern

Type 1 Bedding

Fillitughalloef)															
Pipeid. inctres	46	47	41	49	54	51	52	53	54	55	56	5	58	59	60
12	2275	2325	2375	2425	2475	2525	2575	2625	2675	2725	2775	2825	2875	2925	2975
15	2250	2300	2350	2400	2450	2500	2550	2600	2650	2700	2725	2775	2825	2875	2925
18	2225	2275	2325	2375	2425	2475	2525	2575	2625	2875	2725	2775	2825	2875	2925
21	2225	2275	2325	2375	2425	2475	2525	2575	2625	2675	2725	2775	2825	2875	2025
24	2250	2300	2350	2375	2425	2475	2525	2575	2625	2675	2725	2775	2625	2875	2025
27	2250	2300	2350	2400	2450	2500	2550	2600	2650	2700	2750	2775	2825	2875	2925
30	2275	2325	2375	2425	2450	2500	2550	2600	2650	2700	2750	2800	2850	2900	2950
33	2275	2325	2375	2425	2475	2525	2575	2625	2675	2725	2775	2825	2875	2925	2975
36	2300	2350	2400	2450	2500	2550	2600	2650	2700	2750	2800	2850	2900	2050	3000
42	2300	2350	2400	2450	2500	2650	2800	2650	2700	2750	2800	2850	2900	2950	3000
48	2325	2375	2425	2475	2525	2575	2625	2675	2725	2775	2825	2875	2925	2975	3025
54	2325	2375	2425	2475	2525	2575	2625	2675	2725	2775	2825	2875	2925	2975	3025
60	2350	2400	2450	2500	2550	2600	2650	2700	2750	2800	2850	2900	2950	3000	3050
66	2375	2425	2475	2525	2575	2625	2875	2725	2775	2825	2875	2925	2975	3025	3075
72	2375	2425	2475	2525	2575	2625	2675	2750	2800	2850	2900	2950	3000	3050	3100
78	2400	2450	2500	2550	2600	2650	2700	2750	2800	2850	2900	2950	3000	3050	3100
84	2400	2450	2500	2550	2600	2650	2700	2750	2800	2850	2900	2975	3025	3075	3125
90	2400	2450	2525	2575	2625	2675	2725	2775	2825	2975	2925	2975	3025	3075	3125
96	2425	2475	2525	2575	2625	2675	2725	2775	2825	2875	2925	2975	3050	3100	3150

Installation Type
Type 4

Bedding Thickness
No bedding required except if rock
Foundation, use
$\mathrm{D}_{\mathrm{o}} / 12$ minimum, not less than 6 in. (150 mm)

Haunch \& Outer Bedding
No compaction required, except if Category III, use 85\%

Lower Side

No compaction required, except if Category III, use 85\%

Fill Height Tables are based on:

1. Asoilweigh af $120 \mathrm{Im} / \mathrm{h}$
2. MSHTO HSJO hve had
3. Embanimest iestallation

Type 4 Bedding

E
Cass!
Cass 11
Class III

\square
Cass N
Cass V
Special Desige

Fralleight (lowt)															
Pipe id. (enctres)	1	2	3	4	5	6	7	1	3	50	11	12	13	4	is
12	1550	950	750	800	875	950	1075	1200	1325	1450	1575	1700	1825	1950	2100
15	1450	900	750	775	850	950	1050	1150	1275	1400	1525	1650	1775	1900	2050
18	1375	850	725	750	825	925	1050	1150	1250	1375	1500	1625	1750	1900	2025
21	1325	850	700	750	825	925	1025	1125	1250	1375	1500	1600	1750	1875	2000
24	1275	825	700	725	800	900	1000	1125	1250	1350	1475	1600	1725	1850	1975
27	1150	800	700	725	800	900	1000	1125	1225	1350	1475	1600	1725	1850	197
30	1025	800	675	725	800	900	1000	1100	1225	1350	1475	1600	1700	1850	1950
33	925	775	675	725	800	900	1000	1100	1225	1350	1475	1600	1700	1825	1950
36	850	750	675	725	800	900	1000	1100	1225	1350	1450	1575	1700	1825	185
42	750	750	650	725	800	900	1000	1100	1225	1350	1450	1575	1700	1825	1950
48	700	675	650	725	800	900	1000	1100	1225	1350	1450	1575	1700	1825	195
54	675	625	650	725	800	900	1000	1100	1225	1350	1450	1575	1700	1825	195
60	675	600	650	700	800	900	1000	1100	1225	1350	1450	1575	1700	1825	1950
66	650	575	625	700	800	500	1000	1125	1225	1350	1475	1600	1700	1825	1950
72	650	575	600	700	800	900	1000	1125	1225	1350	1475	1600	1700	1825	1950
78	625	575	600	700	800	900	1000	1125	1250	1350	1475	1600	1700	1825	1950
84	575	576	600	700	800	900	1025	1125	1250	1350	1475	1600	1725	1850	1850
00	550	575	600	700	800	900	1025	1125	1250	1375	1475	1600	1725	1850	1950
95	525	575	800	700	800	925	1025	1150	1250	1375	1500	1600	1725	1850	1975

Computer Program

PipePac 2000

$$
\text { 3EB } \cdot \text { CAPE } L C A
$$

Congratulations! You are almost finished.

Please see remaining slides for the exam questions and submittal form to receive your PDH.

PDH for this course: 2.0
Non Member Fee: \$99.00
Member \& Non Industry Engineer Fee: no charge

Instructions for Submitting Exam

○ Print out the exam submittal form and test.

- Complete the exam by circling the answers on the form.
- Complete submittal form.
- Mail your exam, submittal form and payment (if applicable) to:
American Concrete Pipe Association
8445 Freeport Parkway, Suite 350
Irving, TX 75063
Attn: Professional Membership - Online Exam
- Your exam will be graded by the ACPA and the results provided to you within 60 days of receipt.

RCP 101 Exam Submittal Form

Required Contact Information:
Name: \qquad Date: \qquad

Street Address:
Mailing Address:
City: \qquad State: \qquad Zip Code: \qquad
Telephone: \qquad Fax: \qquad
Website: www
E-mail:
Certification of ethical completion: I certify that I read the course presentation, understood the learning objective, and completed the exam questions to the best of my ability. Additionally, the contact information provided above is true and accurate

Signature: \qquad Date: \qquad
PDH Value: Your exam answers will be graded by The American Concrete Pipe Association. If you answer at least 75 percent of the questions correctly, you will receive a certificate of completion from The American Concrete Pipe Association within 60 days and will be awarded 2.0 professional development hour (equivalent to 0.2 continuing education unit in most states). Note: It is the responsibility of the licensee to determine if this method of continuing education meets his or her board(s) of registration's requirements.

Fee: $\$ 99.00$

Payment Information

Check Enclosed

MasterCard
VISA
American Express
Name on Card
Card No.
Expiration Date \qquad
Signature

* All credit card transactions are processed in U.S. dollars and are subject to the current exchange rates

(2)

American Concrete Pipe Association
8445 Freeport Parkway, Suite 350, Irving, TX 75063 (972) 506-7216 Fax (972) 506-7682 www.concrete-pipe.org

Exam

为
Which two methods are used to manufacture concrete pipe？
Wet cast and wet－out
Packerhead and Hydrostatic
Packerhead and dry cast
Internal and external hydraulic
Soil Tight Joints are used for what two design types？
（2）Culverts and Storm Drains
$\bigcirc($ Manholes and Culverts
MD Storm Drains and Manholes
』๑）Sanitary Sewer and Manholes
目 The supporting strength of a pipe loaded under three－edge bearing test conditions is the same as in the installed condition．

True
False
島边 Which installation method results in the highest soil load on the pipe？

Negative projecting
ऽ Positive projecting
m．Trench
』จ Tunnel

Exam (cont.)

8 What is the test used to determine D-load in a pipe?
There is no test
Three-Edge Bearing Test
Joint Shear Test
Hydrostatic Test
What two critical functions must buried concrete pipe perform?

Barrier and Structure
Framework and System
Structure and Conduit
Channel and Aqueduct
The earth load, live load and bedding factor are all considered in determining what?

D-Load
Hydraulic Capacity
Diameter of Pipe
Type of Joint

Thank you for participating in ACPA's online training.

Please send us an email at info@concrete-pipe.org if you would like to suggest a training topic to be added in the future. In the subject line include "online training topic."

American
Concrete Pipe
Association

